
Workload Clustering for Increasing Energy
Savings on Embedded MPSoCs

S. H. K. Narayanan, O. Ozturk, M. Kandemir M. Karakoy
Dept of CSE 180 Queen’s Gate

The Pennsylvania State University Imperial College
{snarayan,ozturk,kandemir}@cse.psu.edu mk22@doc.ic.ac.uk

Abstract

Voltage/frequency scaling and processor low-power modes (i.e., processor shut-down) are two
important mechanisms used for reducing energy consumptionin embedded MPSoCs. While a unified
scheme that combines these two mechanisms can achieve significant savings in some cases, such an
approach is limited by the code parallelization strategy employed. In this paper, we propose a novel,
integer linear programming (ILP) based workload clustering strategy across parallel processors, oriented
towards maximizing the number of idle processors without impacting original execution times. These
idle processors can then be switched to a low power mode to maximize energy savings, whereas the
remaining ones can make use of voltage/frequency scaling. In order to check whether this approach
brings any energy benefits over the pure voltage scaling based, pure processor shut-down based, or a
simple unified scheme, we implemented four different approaches and tested them using a set of eight
array/loop-intensive embedded applications. Our simulation-based analysis reveals that the proposed
ILP based approach (1) is very effective in reducing the energy consumptions of the applications tested
and (2) generates much better energy savings than all the alternate schemes tested (including a unified
scheme that combines voltage/frequency scaling and processor shutdown).

c©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse anycopyrighted component of this work
in other works must be obtained from the IEEE.

This work is supported in part by NSF Career Award #0093082 and by a grant from the
GSRC.



Workload Clustering for Increasing Energy Savings

on Embedded MPSoCs∗

S.H.K. Narayanan,O. Ozturk,M. Kandemir

Department of Computer Science and Engineering
The Pennsylvania State University

{snarayan,ozturk,kandemir}@cse.psu.edu

M. Karakoy

180 Queen’s Gate
Imperial College

mk22@doc.ic.ac.uk

ABSTRACT

Voltage/frequency scaling and processor low-power modes (i.e., proces-
sor shut-down) are two important mechanisms used for reducing energy
consumption in embedded MPSoCs. While a unified scheme that com-
bines these two mechanisms can achieve significant savings in some
cases, such an approach is limited by the code parallelization strategy
employed. In this paper, we propose a novel, integer linear program-
ming (ILP) based workload clustering strategy across parallel proces-
sors, oriented towards maximizing the number of idle processors with-
out impacting original execution times. These idle processors can then
be switched to a low power mode to maximize energy savings, whereas
the remaining ones can make use of voltage/frequency scaling. In order
to check whether this approach brings any energy benefits over the pure
voltage scaling based, pure processor shut-down based, or a simple
unified scheme, we implemented four different approaches and tested
them using a set of eight array/loop-intensive embedded applications.
Our simulation-based analysis reveals that the proposed ILP based ap-
proach (1) is very effective in reducing the energy consumptions of the
applications tested and (2) generates much better energy savings than
all the alternate schemes tested (including a unified scheme that com-
bines voltage/frequency scaling and processor shutdown).

I. INTRODUCTION
We can roughly divide the efforts on energy savings in embedded

multi-processor system-on-a-chip architectures (MPSoCs) into two cat-
egories. In this first category are the studies that employ processor volt-
age/frequency scaling. The basic idea is to scale down voltage/frequency
of a processor if its current workload is less than the workloads of other
processors. In comparison, the studies in the second category shut down
unused processors (i.e., put them into low-power states along with their
private memory components) during the execution of the current com-
putation. Both these techniques, i.e., voltage scaling and processor shut
down, can be applied at the software level (e.g., directed by an opti-
mizing compiler) or at the hardware-level (e.g., based on a past history-
based workload/idleness detection algorithm). It is also conceivable to
combine these two techniques under a unified optimizer.

Each of these techniques has its advantages and drawbacks. For ex-
ample, a processor shut-down based scheme may not be applicable if
there is no unused processor (note that this does not mean that the work-
loads of all the processors in the MPSoC are similar). Similarly, the
effectiveness of a voltage scaling based scheme is limited by the num-
ber of voltage/frequency levels supported by the underlying hardware.
In general, exploiting processor/memory shutdown saves more energy
when it is applicable (as it reduces leakage energy significantly) or when
we have only a couple of voltage/frequency levels to use. If this is not
the case, then voltage scaling can be effective (and in some cases it is
the only choice). Based on this discussion, one can expect a unified
scheme to be successful. However, we want to re-iterate that if there is
no unused (idle) processor in the current workload assignment, such a
unified scheme simply reduces to a voltage scaling based approach.

∗This work is supported in part by NSF Career Award #0093082 and
by a grant from GSRC.

Our goal in this paper is to explore a workload (job) clustering scheme

that combines voltage scaling with processor shut-down1. The unique-
ness of the proposed unified approach is that it maximizes the oppor-
tunities for processor shut-down by assigning workloads to processors
carefully. It achieves this by clustering the original workloads of pro-
cessors in as few processors as possible. In this paper, we discuss the
technical details of this approach to energy saving in embedded MP-
SoCs. The proposed approach is ILP (integer linear programming)
based; that is, it determines the optimal workload clusterings across
the processors by formulating the problem using ILP and solving it
using a linear solver. In order to check whether this approach brings
any energy benefits over the pure voltage scaling based, pure processor
shut-down based, or a simple unified scheme, we implemented four dif-
ferent approaches within our linear solver and tested them using a set
of eight array/loop-intensive embedded applications. Our simulation-
based analysis reveals that the proposed ILP based approach (1) is very
effective in reducing the energy consumptions of the applications tested
and (2) generates much better energy savings than all the alternate schemes
tested (including one that combines voltage/frequency scaling and pro-
cessor shutdown).

II. EMBEDDED MPSOC ARCHITECTURE,

EXECUTION MODEL, AND RELATED WORK
The chip multiprocessor we consider in this work is a shared-memory

architecture; that is, the entire address space is accessible by all proces-
sors. Each processor has a private L1 cache, and the shared memory is
assumed to be off-chip. Optionally, we may include a (shared) L2 cache
as well. Note that several architectures from academia and industry fit
in this description [1, 10, 8, 9]. We keep the subsequent discussion
simple by using a shared bus as the interconnect (though one could use
fancier/higher bandwidth interconnects as well). We also use the MESI
protocol (the choice is orthogonal to the focus of this paper) to keep
the caches coherent across the CPUs. We assume that voltage level
and frequency of each processor in this architecture can be set indepen-
dently of the others, and also processors can be placed into low power
modes independently. This paper focuses on a single-issue, five-stage
(instruction fetch (IF), instruction decode/operand fetch (ID), execution
(EXE), memory access (MEM), and write-back (WB) stages) pipelined
datapath for each on-chip processor.

Our application execution model in this embedded MPSoC can be
summarized as follows. We focus on array-based embedded applica-
tions that are constructed from loop nests. Typically, each loop nest in
such an application is small but executes a large number of iterations
and accesses/manipulates large datasets (typically multidimensional ar-
rays of signals). We employ a loop nest based application paralleliza-
tion strategy. More specifically, each loop nest is parallelized indepen-
dently of the others. In this context, parallelizing a loop nest means
distributing its iterations across processors and allowing processors to
execute their portions in parallel. For example, a loop with 1000 iter-
ations can be parallelized across 10 processors by allocating 100 itera-

1In this paper, we use the terms “processor show-down” and “low-
power mode” interchangeably.



Figure 1: Comparison of different energy-saving approaches for

a six processor architecture. Arrows indicate how the workloads

(jobs) are clustered by our approach.

tions to each processor.
There are many proposals for power management of a dynamic volt-

age scaling-capable processor. Most of them are at the operating sys-
tem level and are either task-based [12] or interval-based [4]. While
some proposals aim at reducing energy without compromising perfor-
mance, a recent study by Grunwald et al [5] observed noticeable perfor-
mance loss for some interval-based algorithms using actual measure-
ments. Most of the existing compiler based studies such as [11] target
single processor architectures. In comparison, our work targets at a chip
multiprocessor based environment and combines voltage scaling and
processor shutdown. [15] presents and analyzes a voltage/frequency
scaling scheme but, they do not consider processor shut-down. [6] em-
ploys processor a shut-down based mechanism but does not consider
voltage/frequency scaling. In our experimental evaluation, we compare
our approach to pure voltage/frequency scaling and to pure processor
shut-down as well.

III. OUR APPROACH

III.1 Overview
Figure 1 compares four different alternate schemes that saves energy

in an embedded MPSoC architecture. It is assumed, for illustrative pur-
poses, that the architecture has six processors. In Figure 1(a) shows
the workloads of the processors (i.e., the jobs assigned to them) in a
given loop nest. These are assumed to be the loads either estimated by
the compiler or calculated through profiling and are for a single nest.
Figures 1(b) and (c) show the scenarios with pure voltage/frequency
scaling and pure processor shut-down based approaches, respectively.
In (b), four out of our six processors take advantage of voltage scaling
(note that P5 is not used in the computation at all). In (c), on the other
hand, we can place only one processors (P5) into the low-power mode.
A combination of these two approaches is depicted in Figure 1(d). Ba-
sically, this version combines the benefits of voltage/frequency scaling
and processor shut-down. Finally, the result that can be obtained by the
ILP approach proposed in this paper is illustrated in Figure 1(e). Note
that what our approach essentially does is to cluster the total amount of
computational load in as fewer processors as possible so that the number
of unused processors is maximized. In this particular case, the original
loads of three processors (P2, P3, and P4) are combined and assigned to
processor P2. As a result, processors P3 and P4 can also be placed into
the low-power mode (along with their private memory components) to
maximize energy savings, in addition to P5. The next subsection gives
the technical details of this approach. When there are opportunities,
our approach can also use voltage/frequency scaling for the clustered
jobs. It is important to point out that the benefits from our approach
can be expected to be even more significant when the number of volt-
age/frequency levels is small. In such a case, a pure voltage/frequency
scaling based approach cannot stretch the execution time of a processor
to fill the available slack completely.

However, we first need to clarify two important issues. Someone
may ask at this point “why has the application (corresponding to the
scenario in Figure 1(a)) not been parallelized at the first place as shown
in Figure 1(e)?” There are several reasons for this. First, most current
code parallelizers do not consider any energy optimizations. Therefore,

there is really little reason for calculating the workloads of individual
processors, and thus little opportunity for workload clustering. Sec-
ond, the conventional parallelizing compilers try to use as many proces-
sors as possible for executing a given computation unless there exists a
compelling reason to do otherwise (e.g., the excessive synchronization
costs). Third, in many cases, trying to cluster computation in very few
processors can have an impact on execution cycles. Since most paral-
lelizing compilers do not predict or quantify this impact, they do not
attempt such clusterings, being on the conservative side.

The second issue is that, it is possible that the scenario depicted in
Figure 1(e) has poor data locality as compared to scenarios in Fig-
ures 1(b), (c), and (d). This is because conventional code parallelizers
generally try to achieve good data locality, by ensuring that each pro-
cessor mostly uses the same set of data elements as much as possible
(i.e., high data reuse). As a result, the scenario in Figure 1(e) can lead to
an increase in data cache misses, which in turn increases overall energy
consumption. This overhead should also be factored in our clustering
approach to ensure a fair comparison.

The main contribution of the ILP approach proposed in this paper
is to obtain, for each loop nest in an application, the result shown in
Figure 1(e), given the initial scenario (workload assignment) shown in
Figure 1(a) and thus reduce energy consumption.

III.2 Technical Details and Problem Formulation
This section elaborates on the ILP model used to represent the prob-

lem. In our problem, there exist a set of jobs (workloads) that have to be
executed on a set of available processors in the embedded MPSoC such
that the total energy spent by the system is minimal and that the exe-

cution of the jobs completes within a specified time limit, Tmax.2 The
processors can run different jobs at different voltage and frequency lev-
els, which affects energy consumption. The energy expended by each
processor is the sum of the dynamic energy as well as the leakage en-
ergy expended while running. The rest of this section describes the ILP
model in detail.

III.2.1 System and Job Model
We assume that the jobs are members of the set J consisting of Jmax

elements and the processors belong to the set P in which there are
Pmax elements. The processors can run at Vnum discrete set of volt-
age/frequency levels (as supported by the architecture). It is assumed
that only one job can run on a processor at anytime and that once a job
starts running on a processor, it runs uninterrupted to completion. How-
ever, a processor can be assigned to run more than one job, as a result of
workload clustering. The duration that the job occupies the processor is
dependent on the supply voltage/frequency as well as the the frequency
at which the processor is running that particular job. The time (latency)
each job takes up at different voltage levels is specified in the array
Job Length(j, v). Similarly, the dynamic energy spent by each job at

different voltage levels varies and is captured by Job Dynamic(j, v).3

Total Energy is the sum of the energies spent by all jobs on all pro-
cessors due to their running as well as the leakage energy consumed by
the processors. This is the metric whose value we want to minimize.

III.2.2 Mathematical Programming Model
The constraints specified below give the mathematical representation

of our model. We use 0-1 integer linear programming (ILP). This ILP
formulation is executed for each loop nest separately. Table 1 gives the
notation used in our formulation.

Job Assignment Constraints. The 0-1 variable X(p, j, v) deter-
mines whether processor p runs job j at voltage/frequency level v. One

2In this paper, we do not assume a specific code (loop nest) paralleliza-
tion strategy. Rather, we assume that each loop nest is parallelized using
one of the known techniques. For each loop nest, Tmax is determined
by the processor with the largest workload. This is to ensure that our
workload clustering does not have a negative impact on execution times.
3Here j represents a job (workload) and v represents a voltage (fre-
quency) level. In our implementation, the entries ofJob Length(j, v)
and Job Dynamic(j, v) are filled using profiling. All energy estima-
tions are performed using Wattch [2] under the 70nm process technol-
ogy. The increase in data cache misses as a result of clustering is cap-
tured during our profiling.



Notation Explanation

Job Dynamic(j, v) Dynamic energy for running job (workload) j at voltage v

Job Length(j, v) Time taken to run job j at voltage v

X(p, j, v) Value is 1 if job j runs on processor p at voltage v

J Set of jobs

P Set of processors

T max Time deadline before which all jobs must finish

J max Total number of jobs to be executed

P max Total number of processors available

V num Total number of voltage (and frequency) levels available

Total Energy Total energy consumption of the system (to be minimized)

Leakage V alue Leakage energy spent by a processor if it is not

shut down

Table 1: Notation used in our model.

job runs completely on one processor and all jobs are scheduled to run
only once. This is specified as follows:

∀p ∈ P ∀j ∈ J ∀v ∈ V X(p, j, v) ∈ {0|1} (1)

∀j ∈ J

Pmax−1
X

p=0

Vnum−1
X

v=0

X(p, j, v) = 1 (2)

Constraint (1) expresses the term X(j, p, v) as a binary variable; a
processor either runs the job or it does not. Constraint (2) states that
each job can be run only on one processor and that all jobs are assigned
to some processors (i.e., no job is left unassigned). Notice that we want
to determine the value of X(p, j, v) for all p, j, and v.

Deadline Constraints. Jobs are assigned to processors as long as
they can meet the time deadline that is specified. Constraint (3) ex-
presses this:

∀p ∈ P

Jmax−1
X

j=0

Vnum−1
X

v=0

X(p, j, v) ∗ Job Length(j, v) ≤ Tmax (3)

Note that Tmax is determined, for each loop nest, by the longest (largest)
workload.

Clustering and Processor Shut-Down Constraints. Multiple jobs
are run on the same processor if the number of jobs, Jmax, exceeds the
number of processor, Pmax, but also if such an arrangement reduces the
overall energy spent by the system. In case a processor is not assigned
any job, either because of clustering of jobs or because Jmax < Pmax

or because of both these reasons, then it is shut down. Such a processor
does not consume any dynamic energy as it has no jobs running on it
and it does not consume any leakage energy since it is shut down (except
for some small amount of leakage in memory components). Constraint
(4) is introduced to capture processor shutdown:

∀p ∈ P,∀j ∈ J,∀v ∈ V Busy(p) ≥ X(p, j, v) (4)

For a particular processor p, Busy(p) is necessarily 1 if any of the
values in X(p, j, v) is 1. Through this constraint, the value of Busy(P )
is not explicitly expressed if all values in X(p, j, v) are 0. However,
a value of 1 in Busy(p) adds leakage to the overall energy. As the
objective of the ILP-based model is to reduce energy, Busy(p) will be

assigned to be 0 if all values in X(p, j, v) are 0.4

Leakage and Dynamic Energy Calculation. The following expres-
sions capture the leakage energy and dynamic energy spent by the sys-
tem as the sum of the leakage and dynamic energies, respectively, spent
by each processor. The total amount of dynamic energy spent by a pro-
cessor is the sum of the dynamic energies spent for each job that is run

4To preserve data in memory components, a shut-down processor con-
sumes some leakage [3]. Our experiments are performed based on
this principle. However, in our presentation of the ILP formulation,
we assume no leakage consumption in the shut-down state for ease of
presentation.

on that processor. This is captured by Expression (5):

D Energy =

Pmax−1
X

p=0

Jmax−1
X

j=0

Vnum−1
X

v=0

X(p, j, v) ∗ Job Energy(j, v)

(5)

Expression (6) calculates the leakage energy spent. As mentioned ear-
lier, if Busy(p) is 1, then leakage is spent by processor p.

L Energy = Leakage V alue ∗

Pmax−1
X

p=0

∗Busy(p) (6)

Objective Function. The objective function which is the total en-
ergy spent by the system is the sum of the the leakage and dynamic
energies. This is the objective function that our approach tries to mini-
mize:

Total Energy = D Energy + L Energy (7)

The constraints and expressions mentioned in this section are sufficient
to express our problem within ILP. We next look at the additional con-
straints that can be used in order to handle two special cases.

Voltage/Frequency Scaling without Clustering. To model classical
voltage/frequency scaling within our ILP formulation, an input value
Assign(j, p) should specify the processor on which each job runs. Fur-
ther, by connecting this value to that of X(j, p, v), all jobs are forced to
run on the assigned processors alone. This connection can be captured
by the following constraint:

∀p ∈ P,∀j ∈ J

Vnum−1
X

v=0

X(p, j, v) = Assign(p, j) (8)

Clustering without Voltage/Frequency Scaling. To model job clus-
tering without voltage and frequency scaling, we need to constrain the
choice of available voltage frequency levels to either each processor in-
dividually or all processors. In the case of constraining the voltage lev-
els of all processors to one value, Constraint (9) can be used to ensure
that no jobs are assigned voltage levels other than the one specified.

∀p ∈ P,∀j ∈ J,∀v ∈ V − {v′} X(p, j, v) = 0. (9)

To constrain each individual processor to an independent voltage level,
Constraint (10) below can be used.

∀p ∈ P,∀j ∈ J,∀v ∈ V − {v′p} X(p, j, v) = 0. (10)

Here, v′ and v′

p are the universal and individual (for processor p) volt-
age levels, respectively. These constraints simply limit the voltage lev-
els to be used. In this case, the decision to cluster jobs together on a
processor is made by our solver and depends on whether it results in a
lowered overall energy consumption.

IV. EXPERIMENTAL EVALUATION
We present only energy results in this section. The reason is that

none of the techniques evaluated increases original execution cycles
(i.e., we do not exceed Tmax in any loop nest). Specifically, for each
loop nest, the processor with the largest workload sets the limit for volt-
age/frequency scaling and processor shut-down. The ILP solver used
in our experiments is lp solve [7]. We observed that the ILP solution
times with the application codes in our experimental suite varied be-
tween 56.7 seconds and 13.2 minutes. Considering the large energy
savings, these solution times are within tolerable limits.

All the experimental results are obtained using the SIMICS simu-
lation platform [13]. Specifically, we embedded in the SIMICS plat-
form timing and energy models that help us simulate the behavior of
the following four schemes: VS (pure voltage/frequency scaling based
approach); SD (pure processor shut-down based approach); VS+SD (a
unified approach that combines VS and SD); and CLUSTERING (the
ILP-based approach proposed in this paper). The default simulation
parameters used in our experiments are listed in Table 2. In the last
three schemes, when a processor is unused in the current loop nest, it



Simulation Parameter Value

Processor Speed 400MHz

Number of Processors 8

Lowest/Highest Voltage Levels 0.8V/1.4V

Number of Voltage Levels 4

8KB

Instruction Cache 2-way associative

32 byte blocks

8KB

Data Cache 2-way associative

32 byte blocks

Memory 32MB (banked)

Off-Chip Memory Access Latency 100 cycles

Bus Arbitration Delay 5 cycles

Replacement Policy Strict LRU

Cache Dynamic Energy Consumption 0.6 nJ

Memory Dynamic Energy Consumption 1.17 nJ

Leakage Energy Consumption for 32 bytes

Normal Operation 4.49 pJ

Shut-Down State 0.92 pJ

Resynchronization Time for Shut-Down State 30 msec

Resynchronization Time for Voltage Scaling 5 msec

Table 2: The default simulation parameters.

is shut-down and its L1 instruction and data caches are placed into the
low-power mode. The specific low-power mode employed in this paper
is from [3].

We used 8 array/loop-intensive applications for evaluating the four
approaches mentioned above: 3D, DFE, LU, SPLAT, MGRID, WAVE5,
SPARSE, and XSEL. 3D is an image-based modeling application that
simplifies the task of building 3D models and scenes. DFE is a dig-
ital image filtering and enhancement code. LU is an LU decomposi-
tion program. SPLAT is a volume rendering application which is used
in multi-resolution volume visualization through hierarchical wavelet
splitting. MGRID and WAVE5 are C versions of two Spec95FP ap-
plications. SPARSE is an image processing code that performs sparse
matrix operations, and finally, XSEL is an image rendering code. These
C programs are written in such a fashion that they can operate on inputs
of different sizes. We first ran these applications through our simulator
without any voltage scaling or processor shut-down. This version of an
application is referred to as the base version or the base execution in
the remainder of this paper. The energy consumptions (which include
energies spent in processors, caches, interconnects, and off-chip mem-
ory) under the base execution are 272.1mJ, 388.3mJ, 197.9mJ, 208.4mJ,
571.0mJ, 466.2mJ, 292.2mJ, and 401.5mJ for 3D, DFE, LU, SPLAT,
MGRID, WAVE5, SPARSE, and XSEL, respectively. The energy re-
sults presented in this section are given as normalized values with re-
spect to this base execution.

To calculate the dynamic energy consumptions for caches and mem-
ory, we used the Cacti tool [14]. We approximated the leakage energy
consumption by assuming that the leakage energy per cycle for 4KB
SRAM is equal to the dynamic energy consumed per access to a 32 byte
data from the same SRAM. Note that this assumption tries to capture
the anticipated importance of leakage energy in the future as leakage be-
comes the dominant part of energy consumption for 0.10 micron (and
below) technologies for the typical internal junction temperatures in a
chip. In the shut-down state, a processor and its caches consume only a
small percentage of their original (per cycle) leakage energy. However,
when a processor and its data and instruction caches in the shut-down
state are needed, they need to be reactivated (resynchronized). This
resynchronization costs extra execution cycles as well as extra energy
consumption as noted in [3], and all these costs are captured in our
simulations and included in all our results.

Our first set of results, the normalized energy consumptions with the
different schemes, are presented in Figure 2. Each group of bars in
this graph correspond to an application, and the last group of bars gives
the average results across all eight applications. The energy savings
achieved by the VS scheme are not very large (6.55% on the average).
There are two main reasons for this. The first one is the inherent char-
acteristics of some applications. More specifically, when there are no
long idle periods, VS is not applicable. The second reason is the lim-
ited number of voltage/frequency levels used in the default configura-
tion (see Table 2). In comparison, the SD scheme behaves in a different

Figure 2: Normalized energy

consumptions.

Figure 3: The active and idle pe-

riods of processors in the mx3-

raw.c routine from MGRID.

manner. While it is not applicable in some cases (e.g., in applications
DFE, MGRID, SPARSE, and XSEL), the energy savings it brings are
significant in cases where it is applicable. VS+SD simply combines the
benefits of the VS and SD schemes, reducing to VS when SD is not
applicable. The average energy savings (across all eight applications)
achieved by SD and VS+SD are 7.36% and 13.52%, respectively. The
highest energy savings are obtained by our ILP-based approach, which
is 22.65% on the average. These results clearly show the potential ben-
efits of our ILP-based workload clustering approach.

To better illustrate where our energy benefits are coming from, we
give in Figure 3 the percentage of time each processor spends in the
active and idle states for procedure mx3-raw.c, one of the thirteen sub-
programs in application MGRID. We see from this graph that our ILP-
based approach is able to increase the number of idle processors. We
observed similar trends with most of other procedures in our applica-
tions. These results explain the energy benefits observed in Figure 2.

V. CONCLUSIONS
This paper proposes a workload clustering scheme for embedded

MPSoCs that combines voltage scaling with processor shut-down. The
uniqueness of the proposed unified approach is that it maximizes the
use of processor shut-down by clustering workloads (jobs) in as few
processors as possible. We tested this approach along with three al-
ternate schemes using a simulation-based platform and eight embed-
ded applications. Our experiments show that this clustering approach
is very effective in reducing energy consumption and generates better
results than the three alternative schemes evaluated.

VI. REFERENCES
[1] L. A. Barroso et al. Piranha: A Scalable Architecture Based on Single-Chip

Multiprocessing. Proceedings of ISCA’2000.

[2] D. Brooks et al. Wattch: a framework for architectural-level power analysis and
optimizations In Proceedings of ISCA, Canada 2000.

[3] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Simple
techniques for reducing leakage power. Proceedings of ISCA, 2002.

[4] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic
Speed-Setting of a Low-Power CPU. Proceedings of the 1st ACM International
Conference on Mobile Computing and Networking, November 1995.

[5] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld. Policies for
Dynamic Clock Scheduling. Proceedings OSDI’2000.

[6] I. Kadayif, M. Kandemir, and U. Sezer. An Integer Linear Programming Based
Approach for Parallelizing Applications in On-Chip Multiprocessors. In
Proceedings of DAC’2002.

[7] lp solve. ftp://ftp.es.ele.tue.nl/pub/lp solve/

[8] MAJC-5200. http://www.sun.com/microelectronics/ MAJC/5200wp.html

[9] MP98: A Mobile Processor. http://www.labs.nec.co.jp/MP98/top-e.htm.

[10] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a
Single Chip Multiprocessor. Proceedings of ASPLOS’1996.

[11] H. Saputra et al. Energy-Conscious Compilation Based on Voltage Scaling.
Proceedings of ACM SIGPLAN Joint Conference LCTES’02 and SCOPES’02,
Berlin , Germany, June, 2002.

[12] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors. Proceedings of the International Conference
on Computer-Aided Design, November 2000.

[13] SIMICS. http://www.virtutech.com/simics/simics.html.

[14] S. Wilton and N. Jouppi. Cacti: An enhanced cache access and cycle time model.
IEEE Journal of Solid-State Circuits, May 1996.

[15] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal on-line methods for
voltage/frequency control in multiple clock domain microprocessors. Proceedings
of ASPLOS’2004.


